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Disequilibrium Mapping of a Quantitative-Trait Locus in an Expanding
Population
Montgomery Slatkin
Department of Integrative Biology, University of California, Berkeley

Summary

Linkage disequilibrium (LD) mapping can be successful
if there is strong nonrandom association between marker
alleles and an allele affecting a trait of interest. The prin-
ciples of LD mapping of dichotomous traits are well
understood, but less is known about LD mapping of a
quantitative-trait locus (QTL). It is shown in this report
that selective genotyping can increase the power to detect
and map a rare allele of large effect at a QTL. Two
statistical tests of the association between an allele and
a quantitative character are proposed. These tests are
approximately independent, so information from them
can be combined. Analytic theory is developed to show
that these two tests are effective in detecting the presence
of a low-frequency allele with a relatively large effect on
the character when the QTL is either already a candidate
locus or closely linked to a marker locus that is in strong
LD with the QTL. The latter situation is expected in a
rapidly growing population in which the allele of large
effect was present initially in one copy. Therefore, the
proposed tests are useful under the same conditions as
those for successful LD mapping of a dichotomous trait
or disease. Simulations show that, for detection of the
presence of a QTL, these tests are more powerful than
a simple t-test. The tests also provide a basis for defining
a measure of association, g, between a low-frequency
allele at a putative QTL and a low-frequency allele at a
marker locus.

Introduction

Linkage disequilibrium (LD) mapping has been success-
fully applied to several disorders in populations, such as
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the Finnish population, that have grown rapidly in rel-
ative isolation (Peltonen et al. 1995). LD mapping is
effective when a single copy of a disease-associated allele
was present in the founding population and low-fre-
quency alleles at marker loci were in perfect LD with
the disease-associated allele. LD between a marker allele
and the disease-associated allele decays as an exponen-
tial function of the product of time and the recombi-
nation rate, so markers currently in strong LD with a
disease phenotype are likely to be very closely linked to
the causative locus. LD mapping is particularly useful
in a rapidly growing population, because the effects of
genetic drift are minimized. Several recent theories have
examined the statistical and population-genetic aspects
of LD mapping (Thompson and Neel 1997; Xiong and
Guo 1997; Rannala and Slatkin 1998). All of these the-
ories assume a dichotomous trait—individuals are clas-
sified as diseased or not.

The same logic applies to an allele that has a sub-
stantial effect on a quantitative character (Laitinen et al.
1997). A founder allele will remain in strong LD with
closely linked marker alleles that were on the same an-
cestral chromosome, and hence those marker alleles will
tend to be associated with larger or smaller values of
the character. Although this idea is sound in principle,
the question is how best to implement it and to under-
stand the conditions under which it will be useful. One
approach, used by Laitinen et al. (1997), is to dichot-
omize the quantitative trait. In their case, the quanti-
tative trait was serum immunoglobulin E concentration,
which is elevated in asthma patients. In a group of
asthma patients, Laitinen et al. classified individuals with
concentrations 1100 kU/liter as high and classified the
rest as low, and then they tested for a significant asso-
ciation between marker alleles and the dichotomized
trait.

Here I suggest a different approach, based on two
statistical tests for the presence of a quantitative-trait
locus (QTL). Both tests require “selective genotyping”
(Lander and Botstein 1989; Lynch and Walsh 1998):
some individuals are members of a sample selected be-
cause of unusually high or low values of the quantitative
character. The first test is for a significant allele-fre-
quency difference between a random sample from the
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population and the selected sample, and the second test
is for significant heterogeneity within the selected sam-
ple. The second test is approximately independent of the
first. These tests differ from a simple t-test for the dif-
ference between the mean values of the character in in-
dividuals who carry or do not carry a particular marker
allele, because they focus on the selected sample in which
the frequency of an allele of large effect is in much higher
frequency than it is in the whole population.

These two tests can be applied to any locus and any
character, but they probably will be useful only in two
cases, both of which are of some practical interest. First,
if the locus is itself a candidate QTL, then these tests
can be used to determine whether a low-frequency allele
has a significant effect on the character of interest. Can-
didate loci are often the objects of study in pharmaco-
genetics because many of the loci involved in drug me-
tabolism are known (Krynetski and Evans 1998).
Second, when the conditions for LD mapping are
met—that is, when there was a single founder allele of
large effect in a rapidly growing population—these tests
can determine whether a significant association exists
between a low-frequency allele at a marker locus and
the character. A significant positive result would indicate
the presence of a QTL in the region of the marker locus.
In that case, a measure of the relative association be-
tween a marker allele and the character—an association
defined below (in the section A Measure of Marker As-
sociation with a Quantitative Character) as g—would
be useful for mapping the QTL.

If one of the alleles at the QTL is at low frequency,
that locus explains only a small fraction of the genetic
variance in the quantitative character in the study pop-
ulation. Hence, the method described in this article dif-
fers from most methods of QTL mapping that focus on
QTLs that account either for a significant fraction of the
heritable variation within a population or for substantial
differences in average values between populations or
species (Lynch and Walsh 1998). LD mapping of the
kind described in this article can take advantage of the
opportunity created by isolated rapidly growing popu-
lations to study QTLs that otherwise might be difficult
to detect and map. Identification of alleles that have a
large effect on a character would be useful both for
understanding genetic factors that influence the char-
acter and for providing a way to survey for other var-
iants at the same locus.

In the following sections, I will introduce the statistical
tests and investigate their performance both with a can-
didate locus and with a closely linked marker locus.
Finally, I will define a measure of LD for a QTL and
will discuss how this measure can be used for LD
mapping.

Statistical Tests

The quantitative trait is measured by a value x. The
QTL is assumed to have two alleles, A and a, in fre-
quencies p and , respectively, with p being suffi-1 � p
ciently small that, to a first approximation, AA homo-
zygotes can be ignored. The units of measurement of the
character are chosen so that distribution of x in aa in-
dividuals is normal with mean 0 and variance 1 and so
that the distribution in Aa individuals is normal with
mean e and variance 1. To simplify discussion, I assume

. With Hardy-Weinberg proportions of the threee 1 0
genotypes at this locus, the distribution of x in the pop-
ulation is a mixture of two normal distributions,
weighted by 2p and and hence will not be exactly1 � 2p,
normal. If p is small, deviations from normality will not
be apparent, and the A locus will account for a very
small proportion, ∼2p e2, of the total variance.

Assume that we can assess the genotype at a diallelic
locus with alleles B and b. This locus could be either the
QTL itself or a marker locus closely linked to the QTL.
In either case, assume that the B allele is at low fre-
quency, q, in the population, so we need distinguish only
bb homozygotes from Bb heterozygotes. All of the anal-
ysis will be of two groups of individuals who can be
measured for the character and whose genotype at the
B/b locus can be determined. One group, containing n1

individuals, is chosen from the population at random
and independently of x. This group is the “population
sample.” The other group, containing n2 individuals, is
chosen because of unusually large values of x. This group
is the “selected sample.” The population sample will
probably contain individuals who could be included
within the selected sample, but, for statistical analysis,
an individual should not be in both groups.

Let w(x) be the selection function representing the
relative probability that an individual with phenotype x
is included in the sample. It is known from the theory
of quantitative genetics (Lynch and Walsh 1998) that the
most efficient method of selection is truncation selection;

if and 0 otherwise. In some cases, how-w(x) � 1 x 1 b

ever, selection will occur because individuals with larger
x tend to have a disease or a medical condition that
causes them to become part of a study group, as in the
asthma example discussed above. Then, selection is
probably less efficient than truncation selection. The the-
ory will be developed for arbitrary w(x), but the nu-
merical examples will be based on truncation selection.
Lander and Botstein (1989) caution against the selection
of too small a fraction of the population, because in-
dividuals having very extreme values of the character
might be aberrant for other reasons and, therefore, not
be useful for detection of QTLs. They recommend that
individuals beyond the upper or lower 5%—correspond-
ing, in this case, to values of b that are slightly 12—not
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be used. In the present context, the selected sample could
be further subsampled, and a second set of tests could
be performed on the new selected sample.

Selecting a sample fits the design of case-control stud-
ies. The selected sample corresponds to the cases, and
the population sample corresponds to the controls. It is
not necessary to match each individual in the population
sample with an individual in the selected sample, but
the population sample as a group must be compara-
ble—in age, sex, and other factors that might affect the
value of x—to the selected sample The number of in-
dividuals in the selected sample and the number of in-
dividuals in the population sample need not be the same.

The first statistical test (test 1) tests for a significant
difference in the numbers of Bb individuals in the se-
lected and population samples. Testing for significance
is straightforward. In what follows, I assume that sample
sizes are large enough that a x2 test applied to the ap-
propriate contingency table can be used. The Ap-2 # 2
pendix shows an example of the calculations. The result
of the x2 test is a probability, P1, of rejection of the null
hypothesis that there is no difference in the numbers of
Bb individuals. In particular applications, the number
of Bb individuals in the population sample might be
small enough that Fisher’s exact test is more appropriate.

The second test (test 2) depends only on the selected
sample. Assume that k of the n2 individuals in that sam-
ple are bb homozygotes with phenotypes andx , ) ,x1 k

that m individuals are Bb heterozygotes with phenotypes
. To test for significant differences betweeny , ) ,y1 m

groups, either a nonparametric test, such as the Mann-
Whitney U-test, a randomization test, or a test tailored
to this particular situation (samples from truncated nor-
mal distributions) could be used. Student’s t-test would
not be appropriate for small sample sizes, because the
distributions of the xi and yj are likely to be far from
normal.

To get an idea of the power of test 1, I assume that
sample sizes are large enough that asymptotic results
apply. Although xi and yj are not themselves normally
distributed, the central-limit theorem ensures that their
average values will be. Hence, under the null hypothesis
that , the statistice � 0

— —y � x
z �

V Vx y� �k m

will be normally distributed with mean 0 and variance
1, where and are the observed average values and— —x y
where Vx and Vy are unbiased estimates of the variances
(Bulmer 1979). The value of z and a table of the standard
normal distribution give a probability, P2, of rejection
of the null hypothesis. The Appendix illustrates the
calculations.

When both tests can be performed, the results are
asymptotically independent of each other. The depen-
dence between them arises only because the values of k
and m are needed for test 1 and are also part of the
definition of z. As n2 becomes large, k and m approach
their expectations, and p′n2, and hence the′(1 � p )n2

two tests become independent. We can take advantage
of the approximate independence to use Fisher’s method
for the combining of probabilities (Sokal and Rohlf
1980). The resulting test is test 3. According to Fisher’s
method, has a x2 distributionv � �2ln(P ) � 2ln(P )1 2

with 4 df under the null hypothesis. This test results in
a third probability of rejection of the null hypothesis
( ), P3. If vc is the critical value for a level-a teste � 0
( for and for ),v � 9.49 a � .05 v � 18.47 a � .001c c

then we would reject the null hypothesis at level a if
. Combining results from the two tests can leadv� /2cP P e1 2

to rejection of the null hypothesis even if neither test
alone does; for example, if and , thenP � .1 P � .081 2

, allowing rejection of the null hypothesis at thev � 9.66
5% level.

In the simulations discussed below, I compare the per-
formance of these three tests to Student’s t-test applied
to a population sample size of . This sample sizen � n1 2

for the t-test is chosen so that the same number of in-
dividuals are genotyped. In this sample, i individuals are
Bb heterozygotes, and are bb homozygotes.n � n � i1 2

Student’s t-statistic is computed in the usual way (Bulmer
1979), and its value is compared with a two-sided t
distribution with df, to yield the probabilityn � n � 21 2

of rejection of the null hypothesis under this test, Pt.

Candidate Locus

If A is a candidate allele, then, in the above notation,
, and we do not have to consider the B locus sep-q � p

arately. Selection of the sample increases the frequency
of A—from p to a larger value, p′. The frequency of A
in the selected sample is a random variable with expected
value

( ) ( ) ( )w x [f x � f x ]dx∫ Aa aa′p � p � p , (1)
w̄

where fAa(x) is the distribution of x among Aa individuals
(a normal distribution with mean e and variance 1), faa(x)
is the distribution of x among aa individuals (a normal
distribution with mean 0 and variance 1),

— ( ) ( ) ( ) ( ) ( )w � 1 � 2p w x f x dx � 2p w x f x dx ,� Aa � aa

and, throughout, integrals will be taken over all possible
values of x.
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Figure 2 Graphs of the power of test 1 (the test for significant
difference, between the population sample and the selected sample, in
the number of Aa heterozygotes); the vertical axis is the probability
of rejection of the null hypothesis that there is no difference in the
numbers of Aa individuals. These results were obtained under the
assumption that p is given by equation (1) (applying truncation se-
lection with and ) and that . In both cases,b � 2 b � 3 n � n � 501 2

p, the population frequency of A, is .005. Under the assumption of
binomial distributions with means 2p and 2p′ of the number of Aa
individuals in the two groups of 50 individuals, the overall probability
of rejection of the null hypothesis, by use of a x2 test with 1 df, was
computed by averaging over the distribution of the numbers of Aa
individuals in both groups.

Figure 1 Graphs of p′, the frequency of A in the selected sample,
computed from equation (1) in the text, under the assumption of trun-
cation selection with and . In both cases, p, the populationb � 2 b � 3
frequency of A, is .005.

The interpretation of equation (1) is simple: the nu-
merator in the expression on the right-hand side is the
difference between the expected fractions of the Aa and
aa individuals in the selected sample, and the denomi-
nator, , is the expected fraction of the population in—w
the selected sample. Therefore, if the selection function
w(x) were unknown, the expected increase in the fre-
quency of A in the selected sample could be found em-
pirically by estimation of the relative probabilities that
Aa and aa individuals will be included within the selected
sample.

In the particular case of truncation selection, the in-
tegrals can be expressed in terms of error functions, but,
since those have to be evaluated numerically, it is just
as easy to use numerical integration directly, to obtain
quantitative results. Figure 1 shows p′ as a function of
e, for and , corresponding to sampling ofb � 2 b � 3
the upper 7.8% and the upper 1.7% of the population,
respectively, with in both cases. If e is largep � .005
enough, truncation sampling can increase the expected
frequency of A by an order of magnitude or more, en-
suring that an allele that is rare in the population will
be represented in substantial numbers in the selected
sample.

When A is a candidate allele, the question is whether
there is evidence that A has a significant effect on the
character. Figure 2 shows the power of test 1 as a func-
tion of e for and . These results were ob-b � 2 b � 3
tained by assuming binomial distributions with proba-
bilities 2p and 2p′ for the numbers of Aa individuals in,

respectively, the population sample and the selected sam-
ple. Then, for each configuration of the numbers of cop-
ies, a x2 value was calculated, and the probability of that
configuration was accumulated if it led to a rejection of
the null hypothesis at level . Even with only 50a � .05
individuals each in the population sample and the se-
lected sample, there is considerable power to reject the
null hypothesis.

We can obtain a rough idea of the power of test 2
under the present model by approximating the expec-
tation of z as a function of b and e. The expectations
of and are, respectively,— —x y

( ) ( )xw x f x dx∫ aa

¯( )E x � (2)
( ) ( )w x f x dx∫ aa

and

( ) ( )xw x f x dx∫ Aa

¯( )E y � . (3)
( ) ( )w x f x dx∫ Aa

The expected values of the variances are found from
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Figure 3 Graphs of the approximate power of test 2 (the test
for significant heterogeneity in the values of x among Aa and aa in-
dividuals in the selected sample containing n2 individuals); the vertical
axis is the probability of rejection of the null hypothesis that there is
no heterogeneity. These results were obtained under the assumption
that the selected sample contains n2 individuals and that the proportion
of Aa individuals was 2p′, with p′ given by equation (1). The value of
the test statistic z (defined in the text) was computed under the as-
sumption that the means and variances of the character in the selected
sample took their expected value. The value of P2 is then obtained
from a standard normal distribution with mean 0 and variance 1, for
that value of z.

Table 1

Results of Simulations of Samples Genotyped at a Candidate Locus

VALUE OF PARAMETER

NO. OF REPLICATES SIGNIFICANT

AT 5% LEVEL, FORa

e b n1 n2 P1 P2 P3 Pt
b

.5 2 100 100 31 12 34 20

.5 3 100 100 54 12 50 20

.5 2 200 200 49 14 49 28

.5 2 300 300 74 14 70 43

.5 2 50 200 11 9 21 13

.5 3 50 200 32 13 31 13
1.0 2 100 100 89 38 88 53
1.0 3 100 100 100 68 100 53
1.0 2 200 200 98 52 97 83
1.0 2 300 300 100 61 100 90
1.0 2 50 200 65 55 84 55
1.0 3 50 200 100 74 100 55

a Data are no. of replicates for which the null hypothesis could be
rejected at the 5% level. In all cases, 100 replicates were run and

.p � .01
b The t-test was done on a population sample of size . Sincen � n1 2

the results of the t-test do not depend on b, they are the same for
cases that differ only in the value of b.

similar integrals for the second moments. On the basis
of these expectations and variances, we find the expected
value of z and then use a table of a standard nor-
mal distribution to obtain the probability of rejection of
the null hypothesis under this model. The results shown
in figure 3 are only approximations to the power, be-
cause this method does not account for random varia-
tion in z.

Figure 3 shows some results for two sample sizes
( and ) under the assumption that then � 100 n � 5002 2

frequency of A in the selected sample is p′. We can see
that, for , this test has less power than test 1n � 1002

but that, with a larger sample size, , the powern � 5002

increases substantially. In this test, b, the threshold value
of x, makes much less difference, for most values of e,
than it does for test 1.

Simulation Test for a Candidate Locus

The analysis in the preceding section suggests that
these two tests have some power to detect the presence
of an allele having a strong effect on a quantitative char-
acter. To verify that and to compare their performance
with that of the t- test described above, a simulation

program was used to generate hypothetical data ac-
cording to the model described in the first section (Sta-
tistical Tests). In each replicate, the population sample
of n1 individuals was generated by assuming that there
is a mixture of normal distributions, with means 0 and
e unit variances, with proportions 1�2p and 2p. The
selected sample of n2 individuals was generated by use
of a rejection scheme in which randomly chosen indi-
viduals from the population were retained only if x ex-
ceeded b. A x2 test with 1 df was used to provide the
probability P1 of rejection of the null hypothesis. Then
test 2, for significant heterogeneity within the selected
sample, based on the z statistic defined above (in the
Statistical Tests section), was performed, providing the
value of P2. The values of P1 and P2 were combined
according to Fisher’s method described above, to pro-
vide a value of P3. Student’s t-test was performed on a
randomly generated population sample containing

individuals, to give the value of Pt. At the endn � n1 2

of a set of 100 replicate simulations, the numbers of
replicates in which the null hypothesis could be rejected
at the 5% level were reported for each of the four tests.

Table 1 shows some results for a candidate locus. The
parameter values for each case are p, e, b, n1, and n2.
These results confirm the conclusions based on the ap-
proximate calculations in the preceding section. Test 1
is more powerful in rejecting the null hypothesis than is
test 2, and hence, for both tests to be comparable in
power, the number of individuals in the selected sample,
n2, must be larger than the number in the population
sample, n1. For and especially for , theseb � 2 b � 3
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Figure 4 Graphs of the power of test 1 (the test for significant
differences, between the population sample and the selected sample,
in the numbers of Aa heterozygotes). The method for obtaining these
results is the same as that described in the legend to figure 2, except
that p and p′ are replaced by q and q′, the frequencies of B, a marker
allele linked to A, in the population sample and the selected sample.
The results shown are for , , , and .′e � 1 b � 2 D � .95 p � .005

tests were more effective that a t-test, in the detection
of a significant effect at a candidate locus.

Linked Marker Locus

If there is no candidate gene but, instead, a candidate
region containing a biallelic marker locus with alleles B
and b, then the goal is to find evidence for nonrandom
association between a marker allele and the putative
QTL. Disequilibrium mapping of A is feasible only if
the allele at the marker locus on the ancestral A chro-
mosome was and is rare in the population. Assume that
B was on the ancestral chromosome, that its frequency
in the population at the time of sampling is q, and that
the LD coefficient between the two loci is D.

Both of the tests described for candidate alleles can
be used with marker alleles, but there are two confound-
ing factors that reduce statistical power. Some of the
copies of B in the population are not on chromosomes
carrying A, because they are not descendants of the copy
of B that was on the ancestral A chromosome; and some
of the copies of B that descend from the copy on the
ancestral A chromosome are now on chromosomes car-
rying a, because of recombination between the two loci.
The problem is to find how much power is lost because
of these two effects.

The first step is the same: select individuals with large
x, for genotypic analysis. As in the preceding section,
w(x) is the selection function, and, in the numerical ex-
amples, truncation selection with truncation value b will
be used. In the selected sample, the expected frequency
of A will still be given by equation (1). In the population
sample B has expected frequency q, and in the selected
sample its expected frequency is

′( )p � p D
′q � q � . (4)

( )p 1 � p

We are concerned with the case in which A and B are
both at low frequency but with and positive dis-q 1 p
equilibrium ( implies that there is an excess of ABD 1 0
chromosomes). We would expect q to exceed p, because
the concern is with the case in which A arose in the
recent past in a population in which B was already pres-
ent at some frequency. In this case, the maximum value
of D is , and it is convenient to replace D byp(1 � q)
Lewontin’s (1964) D′, defined to be the ratio of D to its
maximum possible value. Substituting for D, we find
that

1 � q′ ′ ′ ′ ′( ) ( )q � q � D p � p � D p � p . (5)
1 � p

The proportional increase in the frequency of B de-

creases with D′. If A arose as a mutant on a B chro-
mosome, then initially. The expected value of D′′D � 1
decays exponentially with time: , where c is the′ �cgD � e
recombination rate between the loci and g is the time in
generations.

Figure 4 shows the dependence of the power of test
1 on q, for one of the sets of parameter values used for
figure 2, assuming . We can see that, when′D � .95

, P1 is reduced by almost a factor of 2 but that,q � .1
for much smaller values, there is a much smaller effect
on P1. This is the pattern found in other numerical results
as well. Changing the value of D′ has a similar effect,
which can be anticipated from equation (5).

We can also test for heterogeneity within the selected
sample. In this case, the expected value of is given not—x
by equation (2) but, instead, by a mixture of equations
(2) and (3) weighted by the fractions of Bb individuals
that are Aa and aa. Similarly, is given by a mixture of—y
equations (2) and (3) weighted by the fractions of bb
individuals that are Aa and aa. The loss of power results
from the incorrect identification of Bb individuals as Aa
individuals and from the incorrect identification of bb
individuals as aa individuals. The expected fraction of
bb individuals who are actually Aa is approximately

, which is so small that to a first approximation2p � D
it can be ignored. The expected fraction of Bb individ-
uals who are actually aa is approximately .′1 � pD /q
Even if , the difference between the frequencies′D � 1
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Table 2

Results of Simulations of Samples Genotyped at a Marker Locus
Linked to a QTL

VALUE OF PARAMETER

NO. OF REPLICATES SIGNIFI-
CANT AT 5% LEVEL, FORa

q D′ e b P1 P2 P3 Pt
b

.01 1.0 1.0 2 65 48 81 55

.02 1.0 1.0 2 55 54 74 44

.02 .95 1.0 2 45 52 71 33

.02 .90 1.0 2 32 34 52 41

.02 .95 1.0 3 97 48 96 33

.02 .90 1.0 3 94 44 99 41

.02 .85 1.0 2 32 37 63 37

.02 .50 1.0 2 13 16 22 22

.02 .25 1.0 2 11 8 14 11

.03 .90 1.0 2 26 46 58 33

.03 .95 1.0 2 38 41 63 34

a Data are no. of replicates for which the null hypothesis could be
rejected at the 5% level. In all cases, 100 replicates were run, p �

, , and ..01 n � 50 n � 2001 2
b The t-test was done on a population sample of size . Sincen � n1 2

the results of the t-test do not depend on b, they are the same for
cases that differ only in the value of b.

of B and A causes some Bb individuals to be aa. The
effect on test 2 is roughly equivalent to the multiplication
of e by . Therefore, we can expect the results′1 � pD /q
of test 2 to be more sensitive to differences between p
and q than is test 1.

Simulation Test for a Marker Locus

The simulation program for a candidate locus was
modified to allow for a marker locus. The two additional
parameters of the simulation model are q and D′. The
same four tests were applied. Table 2 shows results re-
lated to one of the table 1 cases that was of particular
importance because it showed the potential utility of
combining the results of tests 1 and 2. As expected, the
performance of every test deteriorates as q increases and
D′ decreases. Also as expected, test 2 is more sensitive
to changes in the value of D′ than is test 1. The per-
formance of the t-test is sensitive to changes in either q
or D′, because it depends on the correct identification of
the few Bb individuals in the population sample as being
Aa individuals. Even a single incorrect identification can
affect the result. In these simulations, corre-′D � .95
sponds to a recombination rate of , orc � �ln(.95)/g

for a population founded 100 generations inc � .0005
the past, and corresponds to .′D � .90 c � .001

A Measure of Marker Association with a Quantitative
Character

The statistical tests described in the preceding sections
provide a way to test for the presence of a QTL. If a
QTL is in a chromosomal region, then equation (4) sug-
gests an appropriate measure of association between a
marker allele and an allele of large effect at a QTL. Given
the criterion for selection of the sample, w(x), the quan-
tity g, defined by , is analogous to′g � [(q � q)/(1 � q)]
the quantity d defined by Bengtsson and Thomson
(1981), which Devlin and Risch (1995) showed to be
useful in the context of disequilibrium mapping. Equa-
tion (5) tells us that , and hence g depends′ ′g � D (p � p)
on both D′ between the marker and the QTL and the
extent to which selection function increases the fre-
quency of A. If genotypes of several marker loci in the
vicinity of the hypothesized QTL can be surveyed, g

would be expected to be largest for the locus or loci
most closely linked. The maximum value of g would
depend on w(x), but the relative values would depend
on only D′.

The statistical problems associated with practical ap-
plication of g to a data set with one or more linked
marker loci are very similar to the problems of dise-
quilibrium mapping of a dichotomous trait. With a sin-
gle marker, the estimation of recombination rates by use
of maximum likelihood is relatively straightforward

(Rannala and Slatkin 1998). The only addition necessary
for the use of maximum likelihood for the mapping of
the location of a QTL is a step accounting for the ran-
domness in selection of the sample. At the present time,
the simultaneous incorporation of information from sev-
eral marker loci is difficult, and a complete maximum-
likelihood method for a dichotomous trait is not yet
available.

Because marker alleles of interest are at low frequency,
resolution of multilocus genotypes into haplotypes is not
necessary. Low-frequency marker alleles that will be in-
formative for LD mapping would have to be in strong
LD with each other and with A, because of their presence
on the ancestral A chromosome. The lack of strong as-
sociation should be apparent from low values of g. Of
course, having haplotypes instead of genotypes at
marker loci allows the detection of shared chromosomal
segments associated with the QTL, as was tested for by
Laitinen et al. (1997), but resolution of haplotypes re-
quires considerable additional effort and may not be
possible in all cases. The statistical tests and the measure
of association described here do not depend on knowl-
edge about the haplotypes. Finding suitable low-fre-
quency marker alleles may be quite difficult and might
well be the limiting factor for the utility of the methods
described in this article.

Conclusion

The analysis in this article is intended to show that
the detection and disequilibrium mapping of a rare allele
of relatively large effect at a QTL is possible if appro-
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priate variation is present in populations that have
grown rapidly from a small founder population. The
results presented here show that it is possible to detect
the presence of an allele at a QTL that would account
for as little as 25% of the genetic variance of a trait
( ) if it reached a frequency of .5—and that, undere � 1
many conditions, there is some chance of detection of a
rare allele with a much smaller effect ( ). The con-e � .5
ditions for successful mapping are the same as those for
the successful mapping of a locus affecting a dichoto-
mous trait: a single copy of the allele was present in the
ancestral population and was closely linked to a low-
frequency allele at a marker locus. Rapid growth of the
population after the founding event ensures that the ef-
fect of genetic drift is minimal and that the LD signal is
clear.

Whether genetic variants suitable for LD mapping ex-
ist for many quantitative characters is currently un-
known. Alleles of relatively large effect have been found
in many studies of QTLs, but methods for detection of
QTLs are biased toward the finding of alleles of large
effect. At present, it is an open question whether such
alleles are typical for an arbitrarily chosen quantitative
character. Some models of the maintenance of variation
of quantitative characters (Lynch and Walsh 1998, chap.
12) assume the presence of many such low-frequency
alleles, so, if those models are valid, the conditions for
successful LD mapping of QTLs might well be common.
Because of their relatively low frequency, alleles of large
effect would not announce themselves by means of ob-
vious deviations from a normal distribution, although
their presence might be suspected if very large or very
small values of the character are associated with a dis-
ease that is present at unusually high frequency in the
population of interest.

The approach described here assumes that measure-
ment of the quantitative character involves much less
effort than characterization of genotypes does. In that
case, the selection of a sample of individuals with un-
usually large or unusually small values for the character
chosen for genetic analysis is more efficient than the
genotyping of all individuals in the study population.
The theoretical analysis shows that, all else being equal,
the more strongly selected a sample is, the more likely
it is to detect the presence of a low-frequency allele of
large effect; but the caution suggested by Lander and
Botstein (1989) should be borne in mind. Extreme out-
liers may be so for nongenetic reasons. On the other
hand, if measurement of the quantitative character is
more difficult than characterization of genotypes, then
every individual measured for the character should be
genotyped. The simulation analysis in table 2 shows that
relatively large sample sizes are needed in order to find
evidence for the presence of a low-frequency allele of
large effect. Selective genotyping increases the frequency

of rare alleles sufficiently that they are much more easily
detected, and very strong selection ensures that such an
allele will be detected with high probability if it is present
in the genome region examined.
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Appendix

Sample Calculation of Tests 1–3

The sample sizes were chosen for illustrative purposes
and are too small for asymptotic theory to apply. Note
that the values of the character in the population sample
do not affect the results.

Population sample:
2 Bb individuals and 8 bb individuals; ,n � 10 i �1

,1 j � 8
Selected sample:

xi (bb individuals), 2.33, 3.14, 2.03, 2.19; yi (Bb in-
dividuals), 2.04, 2.29, 3.47, 2.76, 2.16, 3.02; ,k � 4

,m � 6 n � 102

Test 1:
x2 value for contingency table2 # 2 (i,j,k,m) �

, which implies10/3 P � .06881

Test 2:
, , , ,— —x � 2.422 y � 2.623 V � .247 V � .314 z �x y

, which implies.595 P � .2762

Test 3:
, which impliesv � �2ln(P P ) � 7.942 P � .09371 2 3
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